Automation Market Industrial Communications

6G Market 2023-2043 – Vision of the future of communications

Pinterest LinkedIn Tumblr

Let’s start from the most basic level – the frequency band. In 5G, we know that the sub-6 GHz (3.5-6 GHz) and millimetre wave (mmWave, 24-100 GHz) bands are the two new bands among the spectrum covered. In 6G, the frequency ranges under consideration include 7 to 20 GHz frequency band, W-band (above 75-110 GHz), D-band (110 GHz to 175 GHz), bands between 275 GHz and 300 GHz, and in the THz range (0.3-10 THz).

The bands between 7 and 20 GHz are taken into consideration because of the need for coverage that will enable mobile and «on the go» applications for numerous 6G use cases. The W and D bands are of interest for both 6G access and Xhaul (e.g. fronthaul, backhaul) networks. A solution that meets the objectives of both services is to be considered. As of September 2022, worldwide spectrum allocations do not go beyond 275 GHz; nevertheless, frequency bands in the range 275-450 GHz have been identified for the implementation of land mobile and fixed service applications, as well as radio astronomy and Earth exploration-satellite service, and space research service in the range 275-1,000 GHz.

An overview of 6G spectrum deployment strategy is shown in the figure below. Note that even though by definition the THz band runs from 300 GHz to 10 THz, telecom professionals have found it simpler to classify beyond-100 GHz applications as THz communications.

What does 6G promise and what are the challenges?

By exploiting the large bandwidth in THz frequency band, 6G is expected to enable 1 Tbps data rate. However, this rate is very challenging to achieve as a large continuous bandwidth is required but in reality, bandwidths that are available for use are limited and split over different bands. Another aspect is that spectral efficiency makes a direct trade-off with the required Signal to Noise Ratio (SNR) for detection. The higher the required SNR, the shorter the respective range becomes due to transmitted power limitations at high frequencies as well as added noise. As an example, Samsung’s state-of-the-art D-band phase array transmitter prototype currently demonstrates the furthest travel distance of 120m but only achieving 2.3 Gbps. Other groups show higher data rate, but the over-the-air travel distance is only at centimetre level.

To further improve link range as well as enhance data rate, several requirements are needed to be considered when designing a 6G radio. For example, selecting appropriate semiconductors to boost link range is critical; as is picking low-loss materials with a small dielectric constant and tan loss to prevent substantial transmission loss. To further reduce transmission loss, a new packaging strategy that tightly integrates RF components with antennas is required. However, one must remember that as devices get increasingly compact, power and thermal management become even more critical.

In addition to device design, network deployment strategy is also a crucial area to research in order to address NLOS and power consumption challenges. Establishing a heterogeneous smart electromagnetic (EM) environment, for example, is being investigated utilising a wide range of technologies, such as reconfigurable intelligent surfaces (RIS) or repeaters.

6G applications

One significant change of 6G to previous communication generations is that it will now include non-terrestrial networks, which is a key development that enables conventional 2D network architectures to function in 3D space. Low Altitude Platforms (LAPs), High Altitude Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), and satellites are examples of non-terrestrial networks (NTNs). We saw China send the world’s first 6G satellite in November 2020. In 2022, Huawei tested the NTN 6G networks using LEO (Low Earth Orbit) satellites. More and more activities in this area show that NTN networks will be a key development trend.

Communications aside, 6G is expected to tap into the world of sensing, imaging, wireless cognition, and precise positioning. In 2021, Apple patented its THz sensor technology for gas sensing and imaging in iDevice. Huawei also tested several Integrated Sensing and Communication (ISAC) prototypes. Many more studies and trials are underway to fully leverage the potential of 6G THz frequency bands.

To learn more about 6G’s technology, applications, market, please read IDTechEx’s 6G market research report. «6G Market 2023-2043: Technology, Trends, Forecasts, Players». This 6G report is built on our expertise, covering the latest 6G technology development trends, key applications, player activities, and market outlook, aiming to provide the reader with a comprehensive understanding of 6G technology and market.

Key aspects in the report:

This report includes a comprehensive review of the technology, players, use case studies, and market for 6G.

  1. 6G development and activities,
    a. by five key regions (US, EU, China, Japan, South Korea
    b. by key players (Ericsson, Nokia, Samsung, Huawei, Apple, NTT DOCOMO)
  2. 6G Technology trends
    a. 6G Radio system analysis
    b. 6G Power consumption analysis
    c. Semiconductor technologies for THz communication:
    i. Si-based semiconductor (CMOS, SOI, SiGe),
    ii. GaAs and GaN,
    iii. InP
    d. Phase array module design for 6G
    e. Examples of state-of-the-art D-band (110 – 175 GHz) phase array modules
    f. Packaging trend for 6G
    g. Low-loss materials for mmWave and THz
    h. Metamaterials
  3. Network deployment strategy
    a. Cell-free massive MIMO
    b. Reconfigurable intelligent surfaces (RIS)
    c. Non-terrestrial networks (NTN)
  4. 6G use cases beyond mobile communication
    a. Sensing
    b. Imaging
    c. Wireless cognition
  5. Market Forecasts:
    a. 6G base stations.
    b. 5G base stations segmented by frequency (sub-6 vs mmWave)
    c. Reconfigurable intelligent surfaces (RIS) forecast, segmented by three types of RIS (Active RIS, Semi-passive RIS, and Passive RIS)

Comments are closed.